Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.

Identifieur interne : 000C47 ( Main/Exploration ); précédent : 000C46; suivant : 000C48

The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.

Auteurs : Amir Porat [États-Unis] ; Christopher Horst Lillig ; Catrine Johansson ; Aristi Potamitou Fernandes ; Lennart Nilsson ; Arne Holmgren ; Jon Beckwith

Source :

RBID : pubmed:17305371

Descripteurs français

English descriptors

Abstract

The reducing proteins glutaredoxin 3 (Grx3) and glutaredoxin 1 (Grx1) are structurally similar but exhibit different specificities toward substrates. Grx1 efficiently reduces ribonucleotide reductase and PAPS reductase, while Grx3 reduces these enzymes inefficiently or not at all. We previously described a selection for Grx3 mutants with increased activity toward substrates of Grx1 in vivo. Remarkably, we repeatedly isolated mutants with changes in only one of the amino acids of Grx3, methionine 43, converting it to either valine, leucine, or isoleucine. In this paper we present additional genetic studies and a biochemical characterization of Grx3-Met43Val, the most efficient mutant. We show that Grx3-Met43Val is able to reduce ribonucleotide reductae and PAPS reductase much more efficiently than the wild-type protein in vitro. The altered protein has an increased Vmax over that of Grx3, nearly the same Vmax as Grx1 while the Km remains high. Molecular dynamics simulations suggest that the Met43Val substitution results in changes in properties of the N-terminal cysteine of the active site leading to a considerably lower pKa. Furthermore, Grx3-Met43Val shows an 11 mV lower redox potential than the wild-type Grx3. These findings provide biochemical and structural explanations for the increased reductive efficiency of the mutant Grx3.

DOI: 10.1021/bi6024353
PubMed: 17305371
PubMed Central: PMC2518409


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.</title>
<author>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115</wicri:regionArea>
<wicri:noRegion>Massachusetts 02115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
</author>
<author>
<name sortKey="Fernandes, Aristi Potamitou" sort="Fernandes, Aristi Potamitou" uniqKey="Fernandes A" first="Aristi Potamitou" last="Fernandes">Aristi Potamitou Fernandes</name>
</author>
<author>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17305371</idno>
<idno type="pmid">17305371</idno>
<idno type="doi">10.1021/bi6024353</idno>
<idno type="pmc">PMC2518409</idno>
<idno type="wicri:Area/Main/Corpus">000C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C79</idno>
<idno type="wicri:Area/Main/Curation">000C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C79</idno>
<idno type="wicri:Area/Main/Exploration">000C79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.</title>
<author>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115</wicri:regionArea>
<wicri:noRegion>Massachusetts 02115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
</author>
<author>
<name sortKey="Fernandes, Aristi Potamitou" sort="Fernandes, Aristi Potamitou" uniqKey="Fernandes A" first="Aristi Potamitou" last="Fernandes">Aristi Potamitou Fernandes</name>
</author>
<author>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Methionine (genetics)</term>
<term>Methionine (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Oxidoreductases (antagonists & inhibitors)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Méthionine (génétique)</term>
<term>Méthionine (métabolisme)</term>
<term>Oxidoreductases (antagonistes et inhibiteurs)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Simulation numérique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Methionine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Methionine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Méthionine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Méthionine</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Computer Simulation</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Glutarédoxines</term>
<term>Modèles moléculaires</term>
<term>Simulation numérique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The reducing proteins glutaredoxin 3 (Grx3) and glutaredoxin 1 (Grx1) are structurally similar but exhibit different specificities toward substrates. Grx1 efficiently reduces ribonucleotide reductase and PAPS reductase, while Grx3 reduces these enzymes inefficiently or not at all. We previously described a selection for Grx3 mutants with increased activity toward substrates of Grx1 in vivo. Remarkably, we repeatedly isolated mutants with changes in only one of the amino acids of Grx3, methionine 43, converting it to either valine, leucine, or isoleucine. In this paper we present additional genetic studies and a biochemical characterization of Grx3-Met43Val, the most efficient mutant. We show that Grx3-Met43Val is able to reduce ribonucleotide reductae and PAPS reductase much more efficiently than the wild-type protein in vitro. The altered protein has an increased Vmax over that of Grx3, nearly the same Vmax as Grx1 while the Km remains high. Molecular dynamics simulations suggest that the Met43Val substitution results in changes in properties of the N-terminal cysteine of the active site leading to a considerably lower pKa. Furthermore, Grx3-Met43Val shows an 11 mV lower redox potential than the wild-type Grx3. These findings provide biochemical and structural explanations for the increased reductive efficiency of the mutant Grx3.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17305371</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.</ArticleTitle>
<Pagination>
<MedlinePgn>3366-77</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The reducing proteins glutaredoxin 3 (Grx3) and glutaredoxin 1 (Grx1) are structurally similar but exhibit different specificities toward substrates. Grx1 efficiently reduces ribonucleotide reductase and PAPS reductase, while Grx3 reduces these enzymes inefficiently or not at all. We previously described a selection for Grx3 mutants with increased activity toward substrates of Grx1 in vivo. Remarkably, we repeatedly isolated mutants with changes in only one of the amino acids of Grx3, methionine 43, converting it to either valine, leucine, or isoleucine. In this paper we present additional genetic studies and a biochemical characterization of Grx3-Met43Val, the most efficient mutant. We show that Grx3-Met43Val is able to reduce ribonucleotide reductae and PAPS reductase much more efficiently than the wild-type protein in vitro. The altered protein has an increased Vmax over that of Grx3, nearly the same Vmax as Grx1 while the Km remains high. Molecular dynamics simulations suggest that the Met43Val substitution results in changes in properties of the N-terminal cysteine of the active site leading to a considerably lower pKa. Furthermore, Grx3-Met43Val shows an 11 mV lower redox potential than the wild-type Grx3. These findings provide biochemical and structural explanations for the increased reductive efficiency of the mutant Grx3.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Porat</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lillig</LastName>
<ForeName>Christopher Horst</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Catrine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fernandes</LastName>
<ForeName>Aristi Potamitou</ForeName>
<Initials>AP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Lennart</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>Jon</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM041883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM041883-17</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-41883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM041883-16</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM041883-15</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AE28F7PNPL</RegistryNumber>
<NameOfSubstance UI="D008715">Methionine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="C052449">3'-phosphoadenylyl-5'-phosphosulfate reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008715" MajorTopicYN="N">Methionine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17305371</ArticleId>
<ArticleId IdType="doi">10.1021/bi6024353</ArticleId>
<ArticleId IdType="pmc">PMC2518409</ArticleId>
<ArticleId IdType="mid">NIHMS61911</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1934062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Nov 6;29(44):10219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 29;277(13):10861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1986 Jun;145(1):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3019265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:71-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 29;309(5735):777-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Feb;12(2):289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1980 Sep 2;19(18):4156-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6251863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Aug 15;392(2):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):6736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jan 18;44(2):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15641786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(7):1947-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2000 Sep;79(3):1537-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 19;274(12):7695-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Apr;172(4):1923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2180911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 6;310(2):449-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11428900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 9;271(32):19099-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1990;63:69-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Dec 27;128(51):16684-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 3;274(36):25254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10464247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1971 Feb 14;55(3):379-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5551392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Aug;25(11):1400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Oct 27;303(3):423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11031118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beckwith, Jon" sort="Beckwith, Jon" uniqKey="Beckwith J" first="Jon" last="Beckwith">Jon Beckwith</name>
<name sortKey="Fernandes, Aristi Potamitou" sort="Fernandes, Aristi Potamitou" uniqKey="Fernandes A" first="Aristi Potamitou" last="Fernandes">Aristi Potamitou Fernandes</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Johansson, Catrine" sort="Johansson, Catrine" uniqKey="Johansson C" first="Catrine" last="Johansson">Catrine Johansson</name>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<name sortKey="Nilsson, Lennart" sort="Nilsson, Lennart" uniqKey="Nilsson L" first="Lennart" last="Nilsson">Lennart Nilsson</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Porat, Amir" sort="Porat, Amir" uniqKey="Porat A" first="Amir" last="Porat">Amir Porat</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17305371
   |texte=   The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17305371" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020